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Abstract
Tumor-Associated Macrophages (TAMs) are critical components of the microenvironment of the majority of malignant 
tumors, associated with poor prognostic notably through various factors secreting. Thus they are emerging as novel tar-
gets for tumor metastasis therapy. In this review article, we describe how TAMs regulate tumor angiogenesis, invasion, 
metastasis, and then discuss the potential of applying TAMs-targeting treatment as a promising therapeutic strategy for 
metastatic cancer.
Keywords: Tumor-associated macrophages (TAM); Tumor microenvironment (TEM); Tumor metastasis; 
Target therapy

Department of Clinical Pharmacy, People’s hospital of Yan’an, China

*Corresponding author: Haipeng Dong, Department of Clinical Pharmacy, People’s hospital of Yan’an, China.
Email: tingdong@mit.edu

Citation: Haipeng, D et al., Targeting Tumor-Associated Macrophages (Tams) Reprogramming for Cancer Metastasis Therapy. (2019) J pharma 
pharmaceutics 6(1): 35- 39.

Received date: April 10, 2019 	         		  Accepted date: April 26, 2019	                  Publish date: April 30, 2018

Mini Review DOI: 10.15436/2377-1313.19.2478

Copyright: © 2019 Haipeng, D. This is an Open access article distributed under the terms of Creative Commons Attribution 4.0 International License.

Introduction

Metastasis defined as the spreading of cancer cells from the pri-
mary tumor to surrounding tissues and distant organs, it is a fore-
most event leading to approximately 90 % mortality of patients 
with cancer[1-3]. Despite the advent of effective cancer therapies 
by developing early diagnosis or applying cancer growth inhi-
bition strategy in the past decades, conventional strategies of 
cancer therapy include surgical resection, chemotherapy, radio-
therapy and immunotherapy, which have made significant con-
tributions to cancer treatment. Limited success has been made 
in the treatment of metastasis owing to its systemic nature and 
the resistance of disseminated tumor cells to existing therapeu-
tic agents. Metastasis suppression is still a crucial step for the 
success of cancer therapy[4,5]. On the basis of evidence from a 
growing body of research indicating tumor associated macro-
phages are crucial to cancer metastasis, we summarized the in-
formation that is currently at hand and discus the potential thera-
peutic strategies used to suppress metastatic process, our review 
highlights the combination therapeutic options to treat cancer 
metastasis. Because the cellular and molecular programs that 

drive cancer metastasis. Although our understanding of cellu-
lar and molecular programs that drive cancer metastasis remains 
quite incomplete. Thus, we here we summarized the information 
that is currently at hand and aiming to expecting a more efficient 
therapy strategy.

Tumor micro environment (TEM) and metastasis: Tumor 
metastasis usually goes through a series of sequential and inter-
related steps that can be conceptualized as the invasion-metasta-
sis cascade. Starting with a detachment of metastatic cells from 
the primary tumor, traveling to the surrounding sites or organs 
intravasation of these cells into the circulatory system and sur-
vival, arrest and extravasation through vascular walls into the 
parenchyma of distant tissues; formation of micro metastatic 
colonies in this parenchyma; and the subsequent proliferation of 
microscopic colonies into overt, clinically detectable metastatic 
lesions, this last process being termed colonization[6-9]. Tumor 
Micro Environment (TME) is intimately involved in all essential 
steps of the metastasis process through interacting with the tu-
mor. Recently, increasing evidence shows that TME participates 
aberrant tissue function and promote the subsequent evolution of 
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more stubborn and advanced malignancies. .
	 In general, TME mainly consists of genetically het-
erogeneous cancer cells, endothelial cells, cancer-associated fi-
broblasts(CAFs), and different populations of immune cells[2], 
establishing a complex cross-talk with tumor via producing 
growth factors, chemokines and matrix-degrading enzymes. For 
example, CAFs secrete PDGF, FAP, FGFR and VDR, which are 
participating in wound healing, Integrating collagen and protein 
to form the ECM fiber network or escaping damage; Immune 
cells produce TNF-α, IL-10, IL-12, TGF-β and HMGB1, which 
are not only treat wound healing, infection, clear dead cells and 
cellular debris but also promote cancer cell proliferating, show-
ing a double effect on tumor formation[10-12].
	 CAFs are the dominant cell type in the tumor stroma, 
which exhibits mesenchymal-like features and are likely meso-
derm-derived. They are recruited and activated by cancer cells. 
The interplay between CAFs and cancer cells within the TME is 
complicated, resulting in various impact on cancer progression 
and metastasis[13-17]. Large amounts of work described pro-tu-
morigenic influence of CAFs on cancer cells driven by altered 
secretome, such as, CXCL12, CCL7, TGF βs, FGFs, HGF, peri-
ostin (POSTN) and TN-C, these secreted factors enhance tumor 
progression by promoting the survival, proliferation, stemness, 
and the metastasis-initiating capacity of cancer cells, ultimately 
assisting cancer metastasis[18-20].
	 Besides CAFs, immune cells also exhibit crucial role in 
TEM, broad and comprehensive understanding of immune cells 
will primarily promote the cancer metastasis study. Among these 
immune cells, Tumor- Associated  Macrophages (TAMs) are one 
of the most abundant infiltrated in solid tumors, which have been 
known to orchestrate the TME for tumor invasion and progres-
sion and contribute to the metastasis of tumor cells[21-23]. Specif-
ically, TAMs are derived from circulating monocytes and differ-
entiate into M1 or M2 macrophages, gaining specific functional 
properties within the TEM (shown as in Figure1). Classically 
activated M1 TAMs suppress cancer progression, while M2 type 
promotes it. However, the specific phenotype of TAMs depends 
on the tumor progression stage. In the early stages of tumors 
progression, TAMs adopt the M1-like phenotype for the inhibi-
tion of angiogenesis in conjunction with the activation of tumor 
immunity. In contrast, TAMs shift to an M2-like state to enhance 
tumor metastasis by secreting different factors (shown as in Fig-
ure1)[24-26]. The most comprehensively described mechanism by 
which M2 TAMs promote cancer metastasis is to provide factors 
that enhance metastasis and the establishment of a premalig-
nant niche of malignant cells, the elements are listed as below: 
Matrix Metallopeptidase 2(MMP2), MMP7, MMP9, epidermal 
growth factor (EGF), wnt family member 5A(WNT5A), mac-
rophage colony-stimulating factor 1(CSF-1), Semaphorin-4D 
(Sema 4D), IL-1β, Cathepsin B, TNFα, VEGF,TGF-β[2,3]. Cys-
tatin B (CSTB) and WNT5A stimulate cancer cell migration and 
invasion; VEGF promotes cancer cell extravasation, and TGF-β 
stimulates cancer cell proliferation and metastasis through C-Jun 
and SMAD3 pathway[27-32]. Per these findings, TAMs are there-
fore emerging as an attractive therapeutic target for the inhibi-
tion of tumor growth and cancer metastasis.

Figure1: The binary M1 / M2 classification of tumor-associat-
ed macrophages(TAMs), Pro-tumor M1 type macrophage and 
anti-tumor M2 type TAM secrete different factors to exact the 
specific functions.

Targeting TAMs therapeutic strategies: Currently, massive 
lines of research are being investigated for the effective targeting 
TAM therapies; the approaches are summarized as the following 
two routes: 

•	 decreasing the quantity of TAMs in tumor tissue; 
•	 Shifting TAMs from tumor-promoting to tumoricidal status.

 A large number of successful attempts have been reported to tar-
get TAM via depleting or inhibiting TAMs recruitment[33-38]. The 
most typical approaches rely on TAM depletion via the inhibition 
of CSF-1 / CSF-1R or CCL2–CCR2 signaling pathways, based 
on evidence that these axes are essential for macrophage recruit-
ment[39-41]. Up to now, a variety of small molecules and mono-
clonal antibodies (mAbs) directed at CSF1R or its ligand CSF1 
are investigated for clinical development[34]. Among the class of 
small molecules, pexidartinib (PLX3397) showed a therapeutic 
effect in KIT-mutated advanced acral and mucosal melanoma 
in phase II clinical trial. ARRY-382, PLX7486, BLZ945, and 
JNJ40346527, are being investigated in solid tumors and cHL 
via targeting CSF1R[42,43]. MAbs in clinical development include 
emactuzumab, AMG820, IMC-CS4, cabiralizumab, MCS110, 
and PD-0360324, with the latter two being the only compounds 
targeting the ligand CSF1[44-47]. A phase I clinical trial using a 
CSF-1R–blocking mAb (RG7155) in patients with diffuse-type 
giant cell tumors (DT-GCT), a proliferative disease caused by 
overexpression of CSF-1[48], yielded measurable clinical re-
sponses. Similarly, the inhibition of CCL2 by an anti-CCL2 
monoclonal antibody (e.g., carlumab) or through its synthesis 
inhibition (e.g., bindarit, trabectedin) prevented the recruitment 
of macrophages into the tumor site and estimated in various met-
astatic cancertherapy[49,50]. Besides mAb targeting CCL2, other 
compounds (e.g., bindarit, trabectedin) were found to inhib-
it the synthesis of CCL2 / MCP-1. Bindarit reduced TAM and 
myeloid-derived suppressor cell infiltration in a breast cancer 
model and resulted in impaired metastatic disease in a prostate 
cancer model[51]. This treatment also targeted angiogenesis and 
tumor growth in human melanoma xenografts[52]. 
	 In comparison with depleting TAMs, functional repro-
gramming of TAMs is emerging as a more attractive strategy for 
cancer metastasis therapy. Bo Yang et al, have proved that Ima-
tinib prevents lung cancer metastasis by interfering the repro-
gramming of M2-like polarization of macrophages[53]. Enlighten 
by the relevance of TAMs for metastasis interference scientist’s 
also sought to re-consider the immune modulatory function of 
the classical chemotherapeutic drugs. Wanderley CW et al. re-
ported that paclitaxel reduces tumor growth by reprogramming 
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TAMs to an M1 profile in a TLR4-Dependent Manner[54]. Tra-
bectedin, a marine-derived natural product, interferes with tran-
scription and DNA repair but also targets TAMs and induces 
their depletion through mechanisms as yet obscure[55]. Brana I 
et al. show that combining Carlumab, a human monoclonal anti-
body against CCL2, with other chemotherapy agents (docetaxel, 
gemcitabine, paclitaxel or carboplatin and pegylated liposomal 
doxorubicin) can significantly delay tumor regrowth following 
chemotherapy[56]. 
	 Despite the above mentioned monotherapies including 
depleting TAMs and re-educating to an M2 phenotype, comple-
menting and / or synergizing with the conventional anti-cancer 
treatment such as chemotherapy as well as other cancer-immu-
notherapy approaches. Floris Dammeijer et al. used CSF-1R ki-
nase inhibitor PLX3397 (pexidartinib) to reduce TAMs amount 
effectively, and then combine with dendritic cell vaccination 
synergistically enhanced the survival in mice cancer model[57]. 
Furthermore, a combination clinical study of PLX3397 and Pem-
brolizumab to treat advanced melanoma and other solid tumors 
are undergoing[58,59]. Olson et al. improved therapeutic response 
by depleting of MHCIIlo TAMs in a preclinical breast cancer 
model which increased the ability of Taxol to induce apoptosis.
	 With the emerging experimental and clinical studies 
indicating a strong association between cancer metastasis and 
increased macrophage infiltration in various cancers, consistent 
with an unbiased transcriptome analysis, the underlying mech-
anism behind TAMs modulated cancer metastasis is widely ex-
plored and can be summarized as involvement intumor angio-
genesis, growth, cell migration and invasion, which was assisted 
by secreting various chemotactic factors. E.g. Urokinase-Type 
Plasminogen Activator (uPA), Matrix Metallo Proteinase 
(MMP) and cathepsins are used to break down the basement 
membrane and remodel the stromal matrix. Meanwhile, various 
growth factors and chemokines like Epidermal Growth Factor 
(EGF), Transforming Growth Factor-Β (TGF-β), Interleukin-8 
(IL-8) and Tumor Necrosis Factor-Α (TNF-α) are mostly pro-
moting the migration of tumor cells towards vessels and provide 
proliferative and anti-apoptotic signals to these cells. Thus, strat-
egies aimed at targeting TAMs for cancer metastasis therapy is 
gaining the most attention recently. A number of these agents 
are already currently under clinical investigation. Thus, either 
monotherapy or in combination with novel and standard cancer 
therapy strategies are worthwhile to explore.
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